The Whole Truth

Covid-19
Covid-19 Vaccines

Professor Jean-Bernard Fourtillan
Doctor Christian Tal Schaller
Doctor Serge Rader
Frédéric Chaumont

August 20, 2020
The calamities of the Vaccine they want to inject in your body

4 fragments of HIV1 which give to vaccinated people: AIDS syndrom and Immunodeficiency as a consequence

DNA sequences from the malaria germ which give Malaria to vaccinated people

157 additional DNA and protein sequences (see Patent US 8,243,718 B2), whose presence and role are unexplained

Nanoparticles which will allow definitive control of people vaccinated thanks to 5G
The ChAdOx1 n-CoV-19 vaccine they want to inject in your body contains:

- **ChAdOx1 n-CoV-19**: Covid-19 coronavirus carried by the vector virus ChAdOx1
- **Nanoparticles**: described in Microsoft Patent PCT/US2019/038084, which will control you thanks to 5G
- **Disinfectants**: either Thimerosal or Formaldehyde and antibiotics
COVID-19 is an artificial coronavirus made in France by the Institut Pasteur from natural Sars-CoV coronavirus

Covid-19 is the result of several genetic manipulations of a strain of Coronavirus Sars-CoV, associated with severe acute respiratory syndrome (SARS), resulting from a sample listed under the number 031589, collected from bronchoalveolar washings of Sars infected patients by scientists of Institut Pasteur, before 2003, at the French hospital in Hanoi (Vietnam)

- 3rd Step: Covid-19 was produced from Sars-Cov-2 by inserting into its genome 4 sequences of HIV1 (RNA AIDS virus)

Finally

Covid-19 was made in France by French scientists at the Institut Pasteur from natural Sars-CoV, then transferred to Wuhan where the People of Institut Pasteur released it, unbeknownst to scientists in the Wuhan laboratory and the Chinese government

When she says: "Covid-19 is not a Chinese virus", CHINA DOES NOT LIE!
Doctor Frédéric Tangy is the father of the Covid-19

Publications related to coronaviruses and vaccines

 VIRAL IMMUNOLOGY, Volume 18, Number 2, 2005, page 317-326
4- 2014: Publication: Nicolas Escriou, Benoît Callendret, Valérie Lorin, Chantal Combredet, Philippe Marianneau, Michèle Février, Frédéric Tangy. *Protection contre le coronavirus du SRAS conférée par le vaccin vivant contre la rougeole exprimant la glycoprotéine de pointe.*
5- 2020: Paris-Match article from April 9-15, 2020
6- 2020: Paris-Match article from May 14-20, 2020
From Sars-CoV to Covid-19

Sars-CoV
Collected, before 2003, at French hospital of Hanoi, by Institut Pasteur (sample n° 031589)

1st Patent in 2003
Patent EP 1 694 829 B1
Patent US 012.8224 A1

Sars-CoV1
1 DNA sequence of 29746 nucleotides + 157 DNA and PRT sequences inserted into RNA genome of Sars-CoV

2nd Patent in 2011
Patent US 8,243,718 B2

Sars-CoV2
CONTINUATION OF
Patent EP 1 694 829 B1
Patent US 012.8224 A1

3rd Patent in 2019
Patent filed in 2019
International Publication date in 2021

Insertion of 4 fragments of HIV1, corresponding to short segments of amino acids found in the gp 120 and the Gag of HIV1, in the Sars-CoV2 genome

Covid-19

Covid-19: an artificial virus made in France
First Patent US 2007/0128224 A1

(19) United States
(12) Patent Application Publication
(45) Pub. Date: Jun. 7, 2007

(54) NOVEL STRAIN OF SARS-ASSOCIATED CORONAVIRUS AND APPLICATIONS THEREOF

(76) Inventors: Sylvie Van Der Werf, Gif-Sur-Yvette (FR); Nicolas Escleron, Paris (FR); Bernadette Crescenzo-Chaigneau, Neuilly-Sur-Seine (FR); Jean-Claude Manuguerra, Paris (FR); Frederick Kunst, Paris (FR); Benoit Calendret, Nanterre (FR); Jean-Michel Betton, Paris (FR); Valerie Lorin, Montceaux (FR); Sylvie Gerbaud, Saint-Maur-Des-Fosses (FR); Ana Maria Burguiere, Clamart (FR); Salima Azebi, Vitry-Sur-Seine (FR); Pierre Charneau, Paris (FR); Frederic Tangy, Les Lilas (FR); Chantal Combrechet, Paris (FR); Jean-Francois Delagneau, La Celle Saint Cloud (FR); Monique Martin, Chatenay Malabry (FR)

Correspondence Address:
FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER LLP
901 NEW YORK AVENUE, NW
WASHINGTON, DC 20004-4413 (US)

(21) Appl. No.: 10/581,356
(22) PCT Filed: Dec. 2, 2004

(30) Foreign Application Priority Data
Dec. 2, 2003 (FR) .. 0314151
Dec. 2, 2003 (FR) .. 0314152

(86) PCT No.: PCT/FR04/03106
§ 371(c)(1), (2), (4) Date: Feb. 8, 2007

(51) Int. Cl.
A61K 39/215 (2006.01)
C12Q 1/70 (2006.01)
C07H 21/04 (2006.01)
C07K 14/165 (2006.01)
C07K 16/10 (2006.01)
C12N 5/06 (2006.01)

(52) U.S. Cl. 424/221.1; 435/35; 435/69.3; 435/326; 435/456; 530/350; 530/388.3; 536/23.72; 977/802

(57) ABSTRACT
The invention relates to a novel strain of severe acute respiratory syndrome (SARS)-associated coronavirus, resulting from a sample collected in Haiti (Vietnam), reference number 031589, nucleic acid molecules originating from the genome of same, proteins and peptides coded by said nucleic acid molecules and, more specifically, protein N and the applications thereof, for example, as diagnostic reagents and/or as a vaccine.
NOVEL STRAIN OF SARS-ASSOCIATED CORONAVIRUS AND APPLICATIONS THEREOF

[0001] The present invention relates to a novel strain of severe acute respiratory syndrome (SARS)-associated coronavirus derived from a sample recorded under No. 031589 and collected in Hanoi (Vietnam), to nucleic acid molecules derived from its genome, to the proteins and peptides encoded by said nucleic acid molecules and to their applications, in particular as diagnostic reagents and/or as vaccine.

[0002] Coronavirus is a virus containing single-stranded RNA, of positive polarity, of approximately 30 kilobases which replicates in the cytoplasm of the host cells; the 5′ end of the genome has a capped structure and the 3′ end contains a polyA tail. This virus is enveloped and comprises, at its surface, peplomeric structures called spicules.
From Covid-19 to ChAdOx1 n-CoV-19 Vaccine

Covid-19

Insertion of Covid-19 genome into the genome of a viral vector (ChAdOx1 Chimpanzee DNA adenovirus)

Jenner Institute
Adrian Hill
Director of Jenner Institute

Covid-19 vaccine

ChAdOx1 nCoV-19 (AstraZeneca, Sanofi)

Insertion of tracing nanoparticles in the vaccine vial to be injected into the human body together with the vaccine

PCT/US20 19/038084 Microsoft

Final vaccine

NANOPARTICLES OF Covid-19 VACCINES
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA

Bill Gates
Nanoparticles they want to inject in your body together with ChAdOx1 nCovid-19 Vaccine

Bill Gates
Thrombinoscope of the promoters of the ChAdOx1 nCoV-19 vaccine

Bill Gates and his allies

Bill Gates, Emmanuel Macron, Jacques Attali, Agnès Buzyn, Yves Lévy, Olivier Véran, Jérôme Salomon, Dominique Martin, Tedros Adhanom Ghebreyesus, Anthony Fauci, Frédéric Tangy, Adrian Hill
WARNING

- Covid-19 helped spark a false pandemic, and spread fear across the world, to make us accept the Covid-19 vaccine.

- By seeking to vaccinate the entire world population, the sponsors of this vaccine, Bill Gates and his allies, want to enslave and control us, pursuing two objectives:

 - Control the entire world population after having vaccinated it, thanks to the deployment of 5G;
 - Limit the world's population.

This vaccine is very dangerous because it will cause, in vaccinated people, deleterious immunodeficiency, due, in particular, to the presence, in its genome, of 4 RNA fragments from HIV, the AIDS virus, and, moreover, DNA fragments from the malaria germ.

MEN WORLDWIDE MUST REFUSE COVID-19 VACCINE THAT BILL GATES AND ITS ALLIES WANT TO IMPOSE ON US
We invite all people who consider information of this video as Fake-News to check their accuracy on the links provided under this video.
Data Sources of Information for the Truth about Covid-19 and ChAdOx1 nCoV-19 Vaccine are presented in the attached PDF below.
To fully control and enslave the world's population, by monitoring and weakening it, the leaders of the New World Order had nothing better at their disposal than a Vaccine. With this diabolical intention, they had many genetic manipulations carried out, on the genome of the Sars-CoV coronavirus responsible for the SARS epidemic that occurred between 2002 and 2003 in Asia.

The Covid-19 coronavirus, different from Sars-CoV2, is an artificial virus that is the result of many genetic manipulations carried out on the natural Sars-CoV coronavirus, which successively led to 3 artificial coronaviruses Sars-CoV1, Sars-CoV2, and Covid-19, described in 3 patents filed by the Institut Pasteur, which provide their intellectual protections.

In its genome, Covid-19 carries, among other calamities, 4 RNA fragments from HIV, the AIDS virus, which corresponds to short segments of amino acids found in gp120 and Gag of HIV-1, which will place all vaccinated people in immunodeficiency, and DNA fragments from the malaria germ.

Men around the world must open their eyes and understand that the natural Sars-CoV coronavirus poses no danger to humanity, unlike artificial Covid-19. Covid-19 helped spark a false pandemic, and spread fear across the world, to make us accept the Covid-19 vaccines.

Numerical tracing nanoparticles have been added to the vials of the final Covid-19 vaccine (ChAdOx1 nCoV-19).

By seeking to vaccinate the entire world population, the promoters of the Covid-19 vaccines pursue two objectives:
- Control the entire world population after having vaccinated it, thanks to the deployment of 5G, because these vaccines contain nanoparticles which will allow the identification and permanent control of vaccinated individuals;
- Limit the world's population.
From Sars-CoV to Covid-19
Doctor Frédéric Tangy is the father of the Covid-19

Doctor Frédéric Tangy
Director of Vaccine Innovation at the Institut Pasteur

Publications related to coronaviruses and vaccines

5- 2020: Paris-Match article from April 9-15, 2020
6- 2020: Paris-Match article from May 14-20, 2020
Doctor Frédéric Tangy is the father of the Covid-19
COVID-19 is an artificial coronavirus made in France by the Institut Pasteur from natural Sars-CoV coronavirus

Covid-19 is the result of several genetic manipulations of a strain of Coronavirus Sars-CoV, associated with severe acute respiratory syndrome (SARS), resulting from a sample listed under the number 031589, collected from bronchoalveolar washings of Sars infected patients by scientists of Institut Pasteur, before 2003, at the French hospital in Hanoi (Vietnam)

- 3rd Step: Covid-19 was produced from Sars-CoV-2 by inserting into its genome 4 sequences of HIV1 (RNA AIDS virus)

Finally

Covid-19 was made in France by French scientists at the Institut Pasteur from Sars-CoV, then transferred to Wuhan where the French scientists of Institut Pasteur do let it escape, unbeknownst to scientists in the Wuhan laboratory and the Chinese government

When she says: "Covid-19 is not a Chinese virus", CHINA DOES NOT LIE!
From Sars-CoV to Sars-CoV1
From Sars-CoV to Sars-CoV1

2003

1 DNA sequence of 29746 nucleotides + 157 DNA and PRT sequences inserted into RNA genome of Sars-CoV

Sars-CoV

Collected at French Hospital of Hanoi, by Institut Pasteur (sample n° 031589)

Patent EP 1 694 829 B1
Patent US 012.8224 A1

Sars-CoV1

Institut Pasteur
Frédéric Tangy
The invention relates to a novel strain of severe acute respiratory syndrome (SARS)-associated coronavirus, resulting from a sample collected in Hanoi (Vietnam), reference number 031589, nucleic acid molecules originating from the genome of same, proteins and peptides coded by said nucleic acid molecules and, more specifically, protein N and the applications thereof, for example, as diagnostic reagents and/or as a vaccine.
NOVEL STRAIN OF SARS-ASSOCIATED
CORONAVIRUS AND APPLICATIONS THEREOF

[0001] The present invention relates to a novel strain of severe acute respiratory syndrome (SARS)-associated coronavirus derived from a sample recorded under No. 031589 and collected in Hanoi (Vietnam), to nucleic acid molecules derived from its genome, to the proteins and peptides encoded by said nucleic acid molecules and to their applications, in particular as diagnostic reagents and/or as vaccine.

[0002] Coronavirus is a virus containing single-stranded RNA, of positive polarity, of approximately 30 kilobases which replicates in the cytoplasm of the host cells; the 5' end of the genome has a capped structure and the 3' end contains a polyA tail. This virus is enveloped and comprises, at its surface, peplomeric structures called spicules.
The subject of the present invention is therefore an isolated or purified strain of severe acute respiratory syndrome-associated human coronavirus, characterized in that its genome has, in the form of complementary DNA, a serine codon at position 23220-23222 of the gene for the S protein or a glycine codon at position 25298-25300 of the gene for ORF3, and an alanine codon at position 7918-7920 of ORF1a or a serine codon at position 26857-26859 of the gene for the M protein, said positions being indicated in terms of reference to the Genbank sequence AY274119.3.

According to an advantageous embodiment of said strain, the DNA equivalent of its genome has a sequence corresponding to the sequence SEQ ID No: 1; this coronavirus strain is derived from the sample collected from the bronchoalveolar washings from a patient suffering from SARS, recorded under the No. 031589 and collected at the Hanoi (Vietnam) French hospital.

In accordance with the invention, said sequenceSEQ ID No: 1 is that of the deoxyribonucleic acid corresponding to the ribonucleic acid molecule of the genome of the isolated coronavirus strain as defined above.
Insertion of a first DNA sequence (29746 nucleotides) in the genome of Sars-Cov collected in the French hospital at Hanoi (Vietnam)
Listing of the 158 DNA and Protein sequences inserted, by Pasteur Institute people, into the Sars-CoV coronavirus, taken, in 2003, from a patient at the French hospital in Hanoi

SEQUENCE LISTING

Sars-CoV1: SEQUENCE 1
DNA

<160> NUMBER OF SEQ ID NOS: 158

<210> SEQ ID NO: 1
<211> LENGTH: 29746
<212> TYPE: DNA
<213> ORGANISM: CORONAVIRUS

<400> SEQUENCE: 1

atattaggttt tttaacctccc caggaanaac ccaaccaacct cgatcctcttg tagatcctgtt 60
cctcaacgca actttaaaat cttggttagct gtcgctcgcc gtcatgcca gtcacaccc 120

atctcacata gcaatcttta atcaattggt caggaactgaa agagcccaaca 29580
cattttcttc gaggccagcc ggagtccagat cgaggggtaca gtgaaatatg ctagggagag 29640
ctgctctatat ggaagagcct tatagttgaa aataaatttt aagatgtgta tccecatgtg 29700
atctatag ctctatagga gaatgccaaa aaaaaaaaaa aaaa 29746

Sars-CoV1: SEQUENCE 2
DNA

<212> TYPE: DNA
<213> ORGANISM: CORONAVIRUS
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (189) (3853)
<223> OTHER INFORMATION:

<400> SEQUENCE: 2

ttctttctct gaaaaaggtta ggtggtatgc tagagaaac ccagaggttg tgggtttcaag 60
tgatattctt gttacaactt aacaagac atg ttt att ttc tta tta ttt ctt 112

Met Phe Ile Phe Leu Leu Phe Leu

act ctc act agt ggt atg cag ctt gag cgg tgc acc act ttt gat gat 160
Thr Leu Thr Ser Gly Ser Asp Leu Asp Arg Cys Thr Thr Phe Asp Asp

10 15

ctc aag ggt gca tgg ttt tgc ttc tgt ggt ttc tgc aag ttt gat gag 3808
Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu
1230 1235 1240
gtt gac tct gag ccc gtt ctc aag ggt gtc aaa tta cat tac aca 3853
Asp Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr
1245 1250 1255
taaaacgaact tattggatggt ttttatagat ttttatcctt tggatcattt actgacagg 3913
cagtaaaat tgcaatgct tcctctgcaaa gt 3945
Listing of the 158 DNA and Protein sequences inserted, by Pasteur Institute people, into the Sars-CoV coronavirus, taken, in 2003, from a patient at the French hospital in Hanoi.

Following up

Sars-CoV1: SEQUENCE 3

PRT

<210> SEQ ID NO 3
<211> LENGTH: 1255
<212> TYPE: PRT
<213> ORGANISM: CORONAVIRUS

SEQUENCE: 3

Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu
1 5 10 15
Asp Arg Cys Thr Thr Phe Asp Asp Val Glu Ala Pro Asn Tyr Thr Glu
20 25 30

Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly
1220 1225 1230
Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys
1235 1240 1245
Gly Val Lys Leu His Tyr Thr
1250
1255

Sars-CoV1: SEQUENCE 16

DNA

<210> SEQ ID NO 16
<211> LENGTH: 700
<212> TYPE: DNA
<213> ORGANISM: CORONAVIRUS
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (41) .. (703)
<223> OTHER INFORMATION:

SEQUENCE: 16

tattattatt attctgttttg gaacctttaac attgctttac arg gca gac aac ggt
1 5
Met Ala Asp Asn Gly

act att acc gtt gag gag ctt aaa caa ctc ctg gaa caa tgg aac cta
10 15 20
Thr Ile Thr Val Glu Glu Leu Lys Glu Leu Leu Glu Gln Trp Asn Leu

Sars-CoV1: SEQUENCE 28

PRT

<210> SEQ ID NO 28
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: CORONAVIRUS

SEQUENCE: 28

Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys Ser Cys Ile
1 5 10 15
Cys Thr Val Val Glu Arg Cys Ala Ser Asn Lys Pro His Val Leu Glu
Listing of the 158 DNA and Protein sequences inserted, by Pasteur Institute people, into the Sars-CoV coronavirus, taken, in 2003, from a patient at the French hospital in Hanoi.

Following up:

Sars-CoV1: SEQUENCE 31

DNA

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>21221</td>
<td>DNA</td>
<td>CORONAVIRUS</td>
</tr>
</tbody>
</table>

```
attgagcc ttgcttctg gtagcgaag aaaaacacag tctcaactcg tttgcctgtc 60
cctcaggtta gagaagttgt cgagctgtgc ttcggggact ctgtggaaga ggcctatgcg 120
gagcagcgtt aacacctcaaa aatggtact cgtgctctag tagagctgga aaaaaggcgtta 180
cgtgccaagtt cggagcagcc ctatgtgcttc attaaacgtt ctgatgcctt aagcaccat 240
```

ttaaactcagattttgagga aacacaaatct ctatcagtt gtctctctat toactctttg 21060
acatgagaact attttctctt aatattaagag gaactgtctgt aatgtctttt aaggagaatc 21120
aatcacaataa ttagatttttt ttctctcttgg aaaaaggtag gtttatcatt agagaaaaaaca 21180
acagagtgtt ggttccaagtt gattattcttg ttaacaactaa 21221

Sars-CoV1: SEQUENCE 46

DNA

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>1995</td>
<td>DNA</td>
<td>CORONAVIRUS</td>
</tr>
</tbody>
</table>

```
tttgtgaact cataactcgt tcaagtaata aaactggttgg ggagcttggt gatgtcagag 60
aaactatcaca ccatcttctaagatcgtcata atttggaatct tgcagagaga gttcttaatg 120
```

Sars-CoV1: SEQUENCE 55

DNA

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>32</td>
<td>DNA</td>
<td>artificial sequence</td>
<td>N sens primer</td>
<td></td>
</tr>
</tbody>
</table>

```
cccatatgtc tgaataatgga ccccaatcaaa ac
```
Listing of the 158 DNA and Protein sequences inserted, by Pasteur Institute people, into the Sars-CoV coronavirus, taken, in 2003, from a patient at the French hospital in Hanoi

Following up

Sars-CoV1: SEQUENCE 61

DNA

<210> SEQ ID NO 61
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Antisens set 2 (28774-28759) primer

<400> SEQUENCE: 61

cagtttcacc acctcc

Sars-CoV1: SEQUENCE 69

PRT

<210> SEQ ID NO 69
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: M2-14 peptide

<400> SEQUENCE: 69

Ala Asp Asn Gly Thr Ile Thr Val Glu Glu Leu Lys Gln
1 5 10

Sars-CoV1: SEQUENCE 73

DNA

<210> SEQ ID NO 73
<211> LENGTH: 410
<212> TYPE: DNA
<213> ORGANISM: CORONAVIRUS

<400> SEQUENCE: 73

ttctccagac aacctcacaaa ttccatgagt ggaaccttgt ctgattcaac tcagggataa 60
daactcatga tgaccacaca aggcatatgg gctatgtaaa cgttttcgca atccggttta 120
cgatacatag tcactctctgt tgcagaatga atctcgttaa ctaacaagca caagtaggtt 180

Sars-CoV1: SEQUENCE 74

PRT

<210> SEQ ID NO 74
<211> LENGTH: 4382
<212> TYPE: PRT
<213> ORGANISM: CORONAVIRUS

<400> SEQUENCE: 74

Met Glu Ser Leu Val Leu Gly Val Asn Glu Lys Thr His Val Gln Leu
1 5 10 15

Ser Leu Pro Val Leu Gln Val Arg Asp Val Leu Val Arg Gly Phe Gly
20 25 30
Listing of the 158 DNA and Protein sequences inserted, by Pasteur Institute people, into the Sars-CoV coronavirus, taken, in 2003, from a patient at the French hospital in Hanoi

Following up

<table>
<thead>
<tr>
<th>Seq ID No</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>20</td>
<td>DNA</td>
<td>Artificial sequence</td>
<td></td>
<td>S/L6/-/10542 primer</td>
</tr>
<tr>
<td>89</td>
<td>20</td>
<td>DNA</td>
<td>Artificial sequence</td>
<td></td>
<td>S/L6/+/10677 primer</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>DNA</td>
<td>Artificial sequence</td>
<td></td>
<td>S/L6/+/10106 primer</td>
</tr>
<tr>
<td>91</td>
<td>20</td>
<td>DNA</td>
<td>Artificial sequence</td>
<td></td>
<td>S/L6/+/9571 primer</td>
</tr>
</tbody>
</table>

Sars-CoV1: SEQUENCE 88 DNA
```
cctgtgcagt ttgctgtgca
```

Sars-CoV1: SEQUENCE 89 DNA
```
ccttgctgca atgaagtaca
```

Sars-CoV1: SEQUENCE 90 DNA
```
atgtcatttg cacagcagaa
```

Sars-CoV1: SEQUENCE 91 DNA
```
cttcaatgtt ttgccatgtt
```
<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>20</td>
<td>DNA</td>
<td>Artificial</td>
<td></td>
<td>S/L11/+19021 primer</td>
</tr>
<tr>
<td>122</td>
<td>20</td>
<td>DNA</td>
<td>Artificial</td>
<td></td>
<td>SARS/L1/F3/+800 primer</td>
</tr>
<tr>
<td>123</td>
<td>20</td>
<td>DNA</td>
<td>Artificial</td>
<td></td>
<td>SARS/L1/F4/+1391 primer</td>
</tr>
<tr>
<td>124</td>
<td>20</td>
<td>DNA</td>
<td>Artificial</td>
<td></td>
<td>SARS/L1/F5/+1925 primer</td>
</tr>
</tbody>
</table>

```plaintext
Sars-CoV: SEQUENCE 121
acgatgctca ggcatgtag

Sars-CoV: SEQUENCE 122
gaggtgcagt cactgcctat

Sars-CoV: SEQUENCE 123
cagagattgg acctgagcat

Sars-CoV: SEQUENCE 124
cagcaaacca ctcaattcct
```
Listing of the 158 DNA and Protein sequences inserted, by Pasteur Institute people, into the Sars-CoV coronavirus, taken, in 2003, from a patient at the French hospital in Hanoi.

Following up:

Sars-CoV1: SEQUENCE 140

```<210> SEQ ID NO 140
<211> LENGTH: 7788
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic S gene

<400> SEQUENCE: 140
```

tcaatattg gcattagcc a tatatttcat tggtatata gcataaatca atattggcata 60

ttgccattg catacgttgt atctatatca taatatgtac atttatattg gctcatgtcc 120

aattgacc gcctgttggc attgattttc gactagttat taatagtaat caattacgg 180
gtcattagtt ctagcccat atatggagtcc cgcgtttaca taacctacgg taaatggcct 240

Sars-CoV1: SEQUENCE 157

```<210> SEQ ID NO 157
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer

<400> SEQUENCE: 157
```

ccatttcaac aatgggccg

Sars-CoV1: SEQUENCE 158

```<210> SEQ ID NO 158
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer

<400> SEQUENCE: 158
```

ataggatccg cgcgtctcatt atttatgcgt gcatactttta taatc
From Sars-CoV1 to Sars-CoV2
From Sars-CoV1 to Sars-CoV2

Sars-CoV1
Produced by inserting 1 DNA sequence (29746 nucleotides) + 157 DNA and PRT sequences into the Sars-CoV RNA genome

2011

INSTITUT PASTEUR

Patent US 8,243,718 B2

CONTINUATION OF
Patent EP 1 694 829 B1
Patent US 012.8224 A1

Sars-CoV2

Frédéric Tangy

Institut Pasteur

(12) United States Patent
Van Der Werf et al.

(54) STRAIN OF SARS-ASSOCIATED CORONAVIRUS AND APPLICATIONS THEREOF

(75) Inventors: Sylvie Van Der Werf, Gil-Sur-Yvette (FR); Nicolas Escrivou, Paris (FR); Bernadette Crescenzo-Chaigne, Neuilly-Sur-Seine (FR); Jean-Claude Manuguerra, Paris (FR); Frederik Kunst, Paris (FR); Benoît Callendret, Nanterre (FR); Jean-Michel Betton, Paris (FR); Valerie Lorin, Montreuil (FR); Sylvie Gerbaud, Saint-Maur-Des-Fossés (FR); Ana Maria Burguierie, Clamart (FR); Salih Azebi, Viry-Sur-Seine (FR); Pierre Charnier, Paris (FR); Frederic Isay, Les Lils (FR); Chantal Combredet, Paris (FR); Jean-François Delaunay, La Celle Saint Cloud (FR); Monique Martin, Chatenay Malabry (FR).

(73) Assignees: Institut Pasteur, Paris (FR); Centre National de la Recherche Scientifique, Paris (FR); Universite Paris 7, Paris (FR).

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 12/754,908
(22) Filed: Apr. 6, 2010

Prior Publication Data

Related U.S. Application Data
Division of application No. 10/381,356, filed on Feb. 8, 2007, now Pat. No. 7,736,850, which is a continuation-in-part of application No. 10/774,720 filed on Dec. 2, 2004.

Foreign Application Priority Data
Dec. 2, 2003 (FR) 03 14151 03 14152

(51) Int. Cl.
C12Q 1/70 (2006.01)
G01N 33/53 (2006.01)
G01N 33/42 (2006.01)
G01N 33/00 (2006.01)

(52) U.S. Cl. 435/5, 435/7.1, 435/7.9; 435/7.92; 435/7.94; 435/7.95

(58) Field of Classification Search:......... None

References Cited
U.S. PATENT DOCUMENTS

Patent No.: US 8,343,718 B2
Date of Patent: Jan. 1, 2013

OTHER PUBLICATIONS

Claims, 116 Drawing Sheets

ABSTRACT
The invention relates to a novel strain of severe acute respiratory syndrome (SARS)-associated coronavirus, resulting from a sample collected in Hanoi (Vietnam), reference number 03 15858, nucleic acid molecules originating from the genome of same, proteins and peptides coded by said nucleic acid molecules and, more specifically, protein N and the applications thereof, for example, as diagnostic reagents and/or as a vaccine.
From Sars-CoV2 to Covid-19
From Sars-CoV2 to Covid-19

2019

Institut Pasteur Frédéric Tangy

Insertion of 4 fragments of HIV1, corresponding to short segments of a.a. found in the gp 120 and the Gag of HIV1, in the Sars-CoV2 genome

Sars-CoV2 Covid-19

Patent filed in 2019
International Publication date in 2021
Transformation of Sars-CoV-2 into Covid-19

The Sars-CoV-2 coronavirus, described in US Patent 8,343,718 B2, is an RNA virus into the genome of which DNA sequences, but not RNA sequences, have been inserted.

Recently, and simultaneously, Professor Luc Montagnier and a group of Indian scientists have analyzed and decrypted the complete genome of the Covid-19 coronavirus responsible for the pandemic.

They found in the Covid-19 genome:
- sequences of HIV, the AIDS virus (4 fragments of HIV1 RNA which correspond to short segments of amino acids found in the gp120 and the Gag of HIV1);
- and DNA sequences from the malaria germ.

These results have been published and confirmed by Professor Peter Chumakov, a well-known Russian microbiologist, and Japanese Professor Tasuku Honjo, 2018 Nobel Prize laureate in medicine. Since there was no RNA sequence in Sars-CoV-2 described in US Patent 8,343,718 B2, this analysis proves that Covid-19 is the result of genetic manipulation of Sars-CoV-2 by French scientists from the Institut Pasteur.
Interview with professor Luc Montagnier by doctor Jean-François Lemoine
Health site: Medical Frequency and Why Doctor
(Thursday April 16, 2020)

To read this interview, see DOCUMENT 1
Live Attenuated Measles Vaccine as a Potential Multivalent Pediatric Vaccination Vector

FRÉDÉRIC TANGY¹ and HUSSEIN Y. NAIM²

(¹- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France. ²- Berna Biotech LTD, Rehhagstrasse 79, 3018 Bern, Switzerland)

ABSTRACT

Live attenuated RNA viruses make highly efficient vaccines. Among them is the live attenuated measles virus (MV) vaccine that has been given to a very large number of children and has been shown to be highly efficacious and safe. MV vaccine induces a life-long immunity after a single injection or two low-dose injections. It is easily produced on a large scale in most countries and can be distributed at low cost. Reversion to pathogenicity has never been observed with this vaccine. For all of these characteristics, developing of MV vaccine vector as a multivalent vaccine to immunize children against both measles and other infectious agents such as human immunodeficiency virus (HIV), flaviviruses, or malaria might be very promising for worldwide use. As MV vaccine is inexpensive to produce, the generation of recombinant vaccines may remain affordable and attractive for the developing world. In this article, we describe the development of MV vector and present some recent data showing the capacity of recombinant MV vaccine to express various proteins from HIV and West Nile virus. In addition, the ability of recombinant MV to induce specific immune responses against these different pathogens are presented and discussed.
Interview with Doctor Frédéric Tangy
Paris-Match article from April 9-15, 2020

To read this interview
See DOCUMENT 3 (Original) and DOCUMENT 4 (English traduction)
Elaboration of Covid-19 vaccine according to Dr Frédéric Tangy

The complete and detailed «recipe» for one Covid 19 vaccine, was given to us by Dr Frédéric Tangy, head of Vaccine Innovation at the Institut Pasteur in Paris, in an interview with the newspaper Paris-Match, in the 9-15 edition April 2020 (See Documents 3 and 4)

Thus, as explained perfectly to us by Dr. Frédéric Tangy - who is decidedly very talkative - the spike glycoprotein of Covid-19, which contains the 4 RNA sequences of HIV- which is clear from the group's analysis of Indian researchers, but was hidden (like DNA sequences of malaria genome) by scientists at the Institut Pasteur - is intended, he said, to induce immunity in the vaccine, serving as an antigen after insertion into the genome of the attenuated measles virus (who remember it is an RNA virus). But, obviously, it does not tell us that the RNA HIV nucleic acids, which have already been previously inserted into the genome of Sars-CoV2 coronavirus, are those of HIV. And, since it is not in the Sars-CoV-2 coronavirus genome, one wonders where it came from!

It should be noted that Dr. Frédéric Tangy gave this interview a few days before that of Pr Luc Montagnier
From Covid-19 to Covid-19 Vaccines
From Covid-19 to Covid-19 Vaccines

Covid-19

Insertion of Covid-19 genome into the genome of a viral vector
(ChAdOx1 chimpanzee DNA adenovirus)

Jenner Institute
Adrian Hill

Covid-19 vaccines
ChAdOx1 nCoV-19 (AstraZeneca, Sanofi)

Insertion of tracing nanoparticles in the vaccine vial to be injected into the human body together with the vaccine

PCT/US20 19/038084 Microsoft

Final vaccine

NANOPARTICLES OF Covid-19 VACCINES
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA

Bill Gates
NANOPARTICLES OF Covid-19 VACCINES

Vaccinated people

Mobile phones

Satellites for 5G

Task server

Nanoparticles

5G relays

Injected together with vaccine

Cryptocurrency System

Communication Network

Bill Gates
Nanoparticles and the permanent control of vaccinated people

The nanoparticles described in the Microsoft patent (US Patent WO 2020/060606 A1) are sensors which must be diffused in the body of the vaccinated person, in order to be able to detect it.

Introduced into the vaccine vial, they are injected into the body, together with the vaccine, at the time of vaccination.

Once they are in the body, they cannot be gotten rid of, unlike a subcutaneous digital tracing microchip. From this moment, the vaccinated people will be detectable by any mobile phone located nearby.

Mobile phones are connected to the internet by 5G.

5G relays allow this communication through satellites 5G.

The vaccinated people will have lost definitely all freedom in their existence.
Are 160 Covid-19 vaccines really in development?

According to information provided by the NIH and WHO, 160 vaccines against Covid-19 are under development.

The list of the 160 candidates for Covid-19 vaccines in development was compiled by the NIH.

Of these 160 candidates, only 21 clinical study protocols have been written by the NIH.
List of candidates for Covid-19 vaccines in development

DRAFT landscape of COVID-19 candidate vaccines – 7 July 2020

21 candidate vaccines in clinical evaluation

<table>
<thead>
<tr>
<th>Platform</th>
<th>Type of candidate vaccine</th>
<th>Developer</th>
<th>Coronavirus target</th>
<th>Current stage of clinical evaluation/regulatory status-Coronavirus candidate</th>
<th>Same platform for non-Coronavirus candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated</td>
<td>Inactivated + alum</td>
<td>Sinovac</td>
<td>SARS-CoV2</td>
<td>Phase 3 NCT04446595 Phase 1/2 NCT04338354 NCT04352608</td>
<td>SARS</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Adenovirus Type 5 Vector</td>
<td>CanSino Biological Inc./Beijing Institute of Biotechnology</td>
<td>SARS-CoV2</td>
<td>Phase 2 ChiCTR2000031781 Phase 1 ChiCTR2000030906</td>
<td>Ebola</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-encapsulated mRNA</td>
<td>Moderna/NIAID</td>
<td>SARS-CoV2</td>
<td>Phase 2 NCT04405076 Phase 1 NCT04283461</td>
<td>multiple candidates</td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine with electroporation</td>
<td>Inovio Pharmaceuticals/International Vaccine Institute</td>
<td>SARS-CoV2</td>
<td>Phase 1/2 NCT04447781 NCT04336410</td>
<td>multiple candidates</td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine</td>
<td>Cadila Healthcare Limited</td>
<td>SARS-CoV2</td>
<td>Phase 1/2 CTRI/2020/07/026352 (not yet recruiting)</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated</td>
<td>Wuhan Institute of Biological Products/Sinopharm</td>
<td>SARS-CoV2</td>
<td>Phase 1/2 ChiCTR2000031809</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated</td>
<td>Beijing Institute of Biological Products/Sinopharm</td>
<td>SARS-CoV2</td>
<td>Phase 1/2 ChiCTR2000032459</td>
<td></td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Full length recombinant SARS-CoV-2 glycoprotein nanoparticle vaccine adjuvanted with Matrix M</td>
<td>Novavax</td>
<td>SARS-CoV2</td>
<td>Phase 1/2 NCT04368988</td>
<td>RSV, CCHF, HPV, V2V, EBOV</td>
</tr>
<tr>
<td>RNA</td>
<td>3 LNP-mRNAs</td>
<td>BioNTech/Fosun Pharma/Pfizer</td>
<td>SARS-CoV2</td>
<td>Phase 1/2 [2020-001038-36 NCT04368728](https://clinicaltrials.gov/ct2/show/2020-001038-36 NCT04368728)</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA Vaccine (GX-19)</td>
<td>Genexine Consortium</td>
<td>SARS-CoV2</td>
<td>Phase 1 NCT04445389</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine + Adjuvant</td>
<td>Osaka University/AnGes/Takara Bio</td>
<td>SARS-CoV2</td>
<td>Phase 1 JapicCTI-205328</td>
<td></td>
</tr>
</tbody>
</table>

DISCLAIMER:

These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity or any of its businesses or activities. While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
Inactivated

<table>
<thead>
<tr>
<th>Platform</th>
<th>Type of candidate vaccine</th>
<th>Developer</th>
<th>Coronavirus target</th>
<th>Current stage of clinical evaluation/regulatory status</th>
<th>Same platform for non-Coronavirus candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>DNA vaccine</td>
<td>Ege University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine</td>
<td>Scancell/University of Nottingham/Nottingham Trent University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine</td>
<td>National Research Centre, Egypt</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA with electroporation</td>
<td>Karolinska Institute / Cobra Biologics (OPENCORONA Project)</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA with electroporation</td>
<td>Chula Vaccine Research Center</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA</td>
<td>Takis/Applied DNA Sciences/Evvivax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Plasmid DNA, Needle-Free Delivery</td>
<td>Immunomic Therapeutics, Inc./EpiVax, Inc./PharmaJet</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA vaccine</td>
<td>BioNet Asia</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>mDNA vaccine</td>
<td>Mediphage Biotechnicals/University of Waterloo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA vaccine</td>
<td>Entos Pharmaceuticals</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>bacTRL-Spike</td>
<td>Synmivo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated + alum</td>
<td>KM Biologics</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated + alum</td>
<td>Selcuk University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated whole virus</td>
<td>National Research Centre, Egypt</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Beijing Minhai Biotechnology Co., Ltd.</td>
<td></td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
</tbody>
</table>

Non-Replicating Viral Vector

- **Adeno-based**: Gamaleya Research Institute
 - SARS-CoV2
 - Phase 1
 - NCT0436471
 - NCT0447825

Protein Subunit

- **Native like Trimeric subunit Spike Protein vaccine**: Clover Biopharmaceuticals Inc./GSK/Dynavax
 - SARS-CoV2
 - Phase 1
 - NCT04405908
 - HIV, REV Influenza

Protein Subunit

- **Adjuvanted recombinant protein (RBD-Dimer)**: Anhui Zhifei Longcom Biopharmaceutical/Institute of Microbiology, Chinese Academy of Sciences
 - SARS-CoV2
 - Phase 1
 - NCT04445194
 - MERS

Protein Subunit

- **Recombinant spike protein with Advax™ adjuvant**: Vaxine Pty Ltd/Medytox
 - SARS-CoV2
 - Phase 1
 - NCT04453852

RNA

- **LNP-nCoVsaRNA**: Imperial College London
 - SARS-CoV2
 - Phase 1
 - NCT044449276
 - EBOV; LASV, MARV, Inf (H7N9), RABV

RNA

- **mRNA**: Curevac
 - SARS-CoV2
 - Phase 1
 - NCT044449276
 - RABV, LASV, YFV; MERS, InfA, ZIKV, DENV, NIPV

RNA

- **mRNA**: People’s Liberation Army (PLA) Academy of Military Sciences/Walvac Biotech.
 - SARS-CoV2
 - Phase 1
 - ChiCTR2000034112

VLP

- **Plant-derived VLP**: Medicago Inc./Université Laval
 - SARS-CoV2
 - Phase 1
 - NCT04450004 (not yet recruiting)
 - Flu, Rotavirus, Norovirus, West Nile virus, Cancer

FOLLOWING

139 candidate vaccines in preclinical evaluation

<table>
<thead>
<tr>
<th>Platform</th>
<th>Type of candidate vaccine</th>
<th>Developer</th>
<th>Coronavirus target</th>
<th>Current stage of clinical evaluation/regulatory status</th>
<th>Same platform for non-Coronavirus candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>DNA vaccine</td>
<td>Ege University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine</td>
<td>Scancell/University of Nottingham/Nottingham Trent University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA plasmid vaccine</td>
<td>National Research Centre, Egypt</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA with electroporation</td>
<td>Karolinska Institute / Cobra Biologics (OPENCORONA Project)</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA with electroporation</td>
<td>Chula Vaccine Research Center</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA</td>
<td>Takis/Applied DNA Sciences/Evvivax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Plasmid DNA, Needle-Free Delivery</td>
<td>Immunomic Therapeutics, Inc./EpiVax, Inc./PharmaJet</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA vaccine</td>
<td>BioNet Asia</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>mDNA vaccine</td>
<td>Mediphage Biotechnicals/University of Waterloo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>DNA vaccine</td>
<td>Entos Pharmaceuticals</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>bacTRL-Spike</td>
<td>Synmivo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated + alum</td>
<td>KM Biologics</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated + alum</td>
<td>Selcuk University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Inactivated whole virus</td>
<td>National Research Centre, Egypt</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>Beijing Minhai Biotechnology Co., Ltd.</td>
<td></td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
</tbody>
</table>

DISCLAIMER:

These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed to constitute, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
<table>
<thead>
<tr>
<th>Non-Replicating Viral Vector</th>
<th>Platforms/Entities</th>
<th>Brands/Peptides</th>
<th>Company/Researcher</th>
<th>WHO Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus-based</td>
<td></td>
<td></td>
<td>Ankara University</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Adeno-associated</td>
<td>MVA encoded VLP</td>
<td>GeoVax/BravoVax</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>virus vector</td>
<td>MVA encoded VLP</td>
<td>GeoVax/BravoVax</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Ad5d6</td>
<td>Ad5d6</td>
<td>Janssen</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Replication</td>
<td>MVA-S encoded VLP</td>
<td>DZIF – German Center for Infection Research/IDT Biologika GmbH</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>adenovirus-based</td>
<td>MVA-S</td>
<td>IDIBAPS-Hospital Clinic, Spain</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>adenovirus-based</td>
<td>adenovirus-based NasoVAX expressing SARS2-CoV spike protein</td>
<td>Alimmune</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>adenovirus-based</td>
<td>adenovirus-based + HLA-matched peptides</td>
<td>Valo Therapeutics Ltd</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>adenovirus-based</td>
<td>adenovirus-based + HLA-matched peptides</td>
<td>Valo Therapeutics Ltd</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>oral vaccine</td>
<td>oral vaccine</td>
<td>oral vaccine</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Oral vaccine</td>
<td>Oral vaccine</td>
<td>Oral vaccine</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Oral vaccine</td>
<td>Oral vaccine</td>
<td>Oral vaccine</td>
<td>SARS-CoV2</td>
</tr>
<tr>
<td>Non-Replicating Viral Vector</td>
<td>Oral vaccine</td>
<td>Oral vaccine</td>
<td>Oral vaccine</td>
<td>SARS-CoV2</td>
</tr>
</tbody>
</table>

DISCLAIMER:

These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
<table>
<thead>
<tr>
<th>Non-Replicating Viral Vector</th>
<th>Subunit</th>
<th>Protein</th>
<th>Adjuvant</th>
<th>University</th>
<th>Status</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>parainfluenza virus 5 (PIV5)-based vaccine expressing the spike protein</td>
<td></td>
<td></td>
<td></td>
<td>University of Georgia/University of Iowa</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Recombinant deactivated rabies virus containing S1</td>
<td></td>
<td></td>
<td></td>
<td>Bharat Biotech/Thomas Jefferson University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Influenza A H1N1 vector</td>
<td></td>
<td></td>
<td></td>
<td>National Research Centre, Egypt</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Inactivated Flu-based SARS-CoV2 vaccine + Adjuvant</td>
<td></td>
<td></td>
<td></td>
<td>National Center for Genetic Engineering and Biotechnology /BIOTEC /GPO, Thailand</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Recombinant S protein</td>
<td></td>
<td></td>
<td></td>
<td>Izmir Biomedicine and Genome Center</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Peptide + novel adjuvant</td>
<td></td>
<td></td>
<td></td>
<td>Bogazici University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>S subunit intranasal liposomal formulation with GLA/3MOS2 adj.</td>
<td></td>
<td></td>
<td></td>
<td>University of Virginia</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Subunit</td>
<td></td>
<td>Helix Biogen Consult, Ogbomoso & Trinity Immunoeficient Laboratory, Ogbomoso, Oyo State, Nigeria.</td>
<td></td>
<td></td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>S,N,M & S1 protein</td>
<td></td>
<td></td>
<td>National Research Centre, Egypt</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td></td>
<td></td>
<td></td>
<td>University of San Martin and CONICET, Argentina</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>RBD protein fused with Fc of IgG + Adj.</td>
<td></td>
<td></td>
<td>Chulalongkorn University/GPO, Thailand</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Capsid-like Particle</td>
<td></td>
<td></td>
<td>AdaptVac (PREVENT-nCoV consortium)</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Drosophila S2 insect cell expression system VLPs</td>
<td></td>
<td></td>
<td>ExpreS2ion</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Peptide antigens formulated in LNP</td>
<td></td>
<td></td>
<td>IMV Inc</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>S protein</td>
<td></td>
<td></td>
<td>WRAIR/USAMRIID</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>S protein + Adjuvant</td>
<td></td>
<td></td>
<td>National Institute of Infectious Disease, Japan/Shionogi/UMN Pharma</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>VLP-recombinant protein + Adjuvant</td>
<td></td>
<td></td>
<td>Osaka University/ BIKEN/ National Institutes of Biomedical Innovation, Japan</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>micronneedle arrays S1 subunit</td>
<td></td>
<td></td>
<td>Univ. of Pittsburgh</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Peptide</td>
<td></td>
<td></td>
<td>Vaxil Bio</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Adjuvanted protein subunit (RBD)</td>
<td></td>
<td></td>
<td>Biological E Ltd</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Peptide</td>
<td></td>
<td></td>
<td>Flow Pharma Inc</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>S protein</td>
<td></td>
<td></td>
<td>AJ Vaccines</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>II-KeyDown peptide</td>
<td></td>
<td></td>
<td>Generex/EpiVax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>S protein</td>
<td></td>
<td></td>
<td>EpiVax/Univ. of Georgia</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>Protein Subunit EPV-CoV-19</td>
<td></td>
<td></td>
<td>EpiVax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>S protein (baculovirus production)</td>
<td></td>
<td></td>
<td>Sanofi Pasteur/GSK</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
</tbody>
</table>

DISCLAIMER:
These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
<table>
<thead>
<tr>
<th>Protein Subunit</th>
<th>Heat Biologics/Univ. Of Miami</th>
<th>SARS-CoV2</th>
<th>Pre-Clinical</th>
<th>NSCLC, HIV, malaria, Zika</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp-96 backbone</td>
<td>University of Queensland/GSK/Dynavax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td>Nipah, influenza, Ebola, Lassa</td>
</tr>
<tr>
<td>Molecular clamp stabilized Spike protein</td>
<td>FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Peptide vaccine</td>
<td>FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>S1 or RBD protein</td>
<td>Baylor College of Medicine</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td>SARS</td>
</tr>
<tr>
<td>Subunit protein, plant produced</td>
<td>iBio/CC-Pharming</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Recombinant protein, nanoparticles (based on S-protein and other epitopes)</td>
<td>Saint-Petersburg scientific research institute of vaccines and serums</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>COVID-19 XWG-03 truncated S (spike) proteins</td>
<td>Innovax/Xiamen Univ./GSK</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td>HPV</td>
</tr>
<tr>
<td>Adjuvanted microparticle peptide</td>
<td>VIIDO-InterVac, University of Saskatchewan</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Synthetic Long Peptide Vaccine candidate for S and M proteins</td>
<td>OncoGen</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Oral E. coli-based protein expression system of S and N proteins</td>
<td>MIGAL Galilee Research Institute</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Nanoparticle vaccine</td>
<td>LakePharma, Inc.</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Plant-based subunit (RBD-Fc + Adjuvant)</td>
<td>Baiya Phytopharma/ Chula Vaccine Research Center</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>OMV-based vaccine</td>
<td>Quadram Institute Biosciences</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td>Flu A, plague</td>
</tr>
<tr>
<td>OMV-based vaccine</td>
<td>BIOMVIS Srl/Univ. of Trento</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>structurally modified spherical particles of the tobacco mosaic virus (TMV)</td>
<td>Lomonosov Moscow State University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td>rubella, rotavirus</td>
</tr>
<tr>
<td>Spike-based</td>
<td>University of Alberta</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td>Hepatitis C</td>
</tr>
<tr>
<td>Recombinant S1-Fc fusion protein</td>
<td>AnyGo Technology</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Recombinant protein</td>
<td>Yisheng Biopharma</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Recombinant S protein in IC-BEVS</td>
<td>Vabiotech</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Orally delivered, heat stable subunit</td>
<td>Applied Biotechnology Institute, Inc.</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>S-ZP protein + Cpg 1018</td>
<td>Medigen Vaccine Biologics Corporation/NIAID/Dynavax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Peptides derived from Spike protein</td>
<td>Axon Neurosciences SE</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Protein Subunit</td>
<td>MOGAM Institute for Biomedical Research, GC Pharma</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>RBD-based</td>
<td>Neovii/Fel Aviv University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>RBD-based</td>
<td>Kentucky Bioprocessing, Inc</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
<tr>
<td>Outer Membrane Vesicle (OMV)-subunit</td>
<td>Intravacc/Epivax</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer:

These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
<table>
<thead>
<tr>
<th>Protein Subunit</th>
<th>Spike-based (epitope screening)</th>
<th>ImmunoPrecise/LiteVax BV</th>
<th>SARS-CoV2</th>
<th>Pre-Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicating Viral Vector</td>
<td>YF17D Vector</td>
<td>KU Leuven</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Measles Vector</td>
<td>Cadila Healthcare Limited</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Measles Vector</td>
<td>Institute Pasteur/Thermis/Univ. of Pittsburgh Center for Vaccine Research/Merck</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical West nile, chik, Ebola, Lassa, Zika</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Measles Vector</td>
<td>FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Measles Virus (S, N targets)</td>
<td>DZIF – German Center for Infection Research/CanVirex AG</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical Zika, H7N9, CHIKV</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Horsepox vector expressing S protein</td>
<td>Tonix Pharma/Southern Research Institute Pasteur/Themis/Univ. of Western Ontario</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical Smallpox, monkeypox</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Live viral vectored vaccine based on attenuated influenza virus backbone (intranasal)</td>
<td>BiOCAD and IEM</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical Influenza</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Recombinant vaccine based on Influenza A virus, for the prevention of COVID-19 (intranasal)</td>
<td>FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical Influenza</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Attenuated Influenza expressing an antigenic portion of the Spike protein</td>
<td>Fundação Oswaldo Cruz and Instituto Buntantan</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical Influenza</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Influenza vector expressing RBD</td>
<td>University of Hong Kong</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Replication-competent VSV chimeric virus technology (VSVΔG) delivering the SARS-CoV-2 Spike (S) glycoprotein.</td>
<td>IAVI/Merck</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical Ebola, Marburg, Lassa</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>VSV-S</td>
<td>University of Western Ontario</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical HIV, MERS</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>RSV vector</td>
<td>FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>M2-deficient single replication (M2SR) influenza vector</td>
<td>UW–Madison/FluGen/Bharat Biotech</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical influenza</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Newcastle disease virus vector (NDV-SARS-CoV-2/Spike)</td>
<td>Intravacc/ Wageningen Bioveterinary Research/Utrecht Univ.</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Replicating Viral Vector</td>
<td>Avian paramyxovirus vector (APMV)</td>
<td>The Lancaster University, UK</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA</td>
<td>Selcuk University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-mRNA</td>
<td>Translate Bio/Sanoﬁ Pasteur</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-mRNA</td>
<td>CanSino Biologics/Precision NanoSystems</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-encapsulated mRNA cocktail encoding VLP</td>
<td>Fudan University/ Shanghai JiaoTong University/RNAcure Biopharma</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-encapsulated mRNA encoding RBD</td>
<td>Fudan University/ Shanghai JiaoTong University/RNAcure Biopharma</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>Replicating Defective SARS-CoV-2 derived RNAs</td>
<td>Centro Nacional Biotecnología (CNB-CSIC), Spain</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-encapsulated mRNA</td>
<td>University of Tokyo/ Daichi-Sankyo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical MERS</td>
</tr>
</tbody>
</table>

DISCLAIMER:

These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
<table>
<thead>
<tr>
<th>RNA</th>
<th>Liposome-encapsulated mRNA</th>
<th>BIOCAD</th>
<th>SARS-CoV2</th>
<th>Pre-Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>Several mRNA candidates</td>
<td>RNAimmune, Inc.</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA</td>
<td>FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA</td>
<td>China CDC/Tongji University/Stermina</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA</td>
<td>Arcturus/Duke-NUS</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>LNP-mRNA</td>
<td>Chula Vaccine Research Center/University of Pennsylvania</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA in an intranasal delivery system</td>
<td>eTheRNA</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA</td>
<td>Greenlight Biosciences</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>RNA</td>
<td>mRNA</td>
<td>IDIBAPS-Hospital Clinic, Spain</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>VLP</td>
<td>Middle East Technical University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>Enveloped Virus-Like Particle (eVLP)</td>
<td>VBI Vaccines Inc.</td>
<td>SARS-CoV2, SARS-CoV, & MERS-CoV</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>S protein integrated in HIV VLPs</td>
<td>IrisiCaixa AIDS Research/IRTA-CReSA/Barcelona Supercomputing Centre/Grifols</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>VLP + Adjuvant</td>
<td>Mahidol University/ The Government Pharmaceutical Organization (GPO)/Siriraj Hospital</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>Virus-like particles, lentivirus and baculovirus vehicles</td>
<td>Navarrabiomed, Oncoimmunology group</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>Virus-like particle, based on RBD displayed on virus-like particles</td>
<td>Saiba GmbH</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>ADDomerTM multiepitope display</td>
<td>Imophoron Ltd and Bristol University's Max Planck Centre</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>Unknown</td>
<td>Doherty Institute</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>eVLP</td>
<td>OSIVAX</td>
<td>SARS-CoV1, SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>VLP</td>
<td>VLPs peptides/whole virus</td>
<td>ARTES Biotechnology</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Tulane University</td>
<td>SARS-CoV2</td>
<td>Pre-Clinical</td>
</tr>
</tbody>
</table>

DISCLAIMER:
These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.
The time required to develop a new vaccine since the discovery of a new virus until the Marketing Authorization

At least 13 years

- Identification of the virus responsible for the epidemic: 1 year

- Development of a vaccine: 8 years, according to Dr Frédéric Tangy in Paris-Match from 14-20 May 2020

- Preclinical studies: analytical, galenical, and toxicological in animals: 1 year

- Study in humans:

 - Phase I: in healthy volunteers after favorable opinion of Protection Committee, and Free an Informed Consent of healthy voluntary subjects: 6 months to 1 year

 - Phase II: in 100 to 1000 subjects after favorable opinion of Protection Committee and Free and Informed Consent of all subjects: 6 months to 1 year

 - Phase III: in 10 000 to 100 000 subjects or more after favorable opinion of Protection Committee and Free and Informed Consent of all subjects: 6 months to 1 year

During development you cannot go from one study phase to the next, without having the results of the previous phase
1- Protocol of the University of Oxford / Astra Zeneca Phase I study with the ChAdOx1 nCoV-19 vaccine

- **Sponsor** of the study: Research Services, University Offices Wellington Square, Oxford, 1200, United Kingdom
- **Country** of the study: South Africa
- **Summary of the study**: A Phase I/II, double-blinded, placebo-controlled, individually randomized trial to assess safety, immunogenicity and efficacy of the candidate Coronavirus disease (COVID-19) vaccine ChAdOx1 nCoV-19 in adults aged 18-65 years living with and without HIV in South Africa. The vaccine or placebo will be administered via an intramuscular injection into the deltoid muscle of the non-dominant arm. A total of 2000 participants will be enrolled into the trial; 1950 HIV-uninfected and 50 people living with HIV. There will be 4 trial groups, group 1 (n=50; intensive safety & immunogenicity cohort, HIV negative), group 2a (n=250; safety, intense immunogenicity & efficacy), group 2b (n=1650; safety, immunogenicity & vaccine efficacy) and group 3 (n=50, intensive safety & immunogenicity cohort, HIV positive). Participants will be followed up for 12 months after enrollment.
- **Ethics Approval**: approval given on May, 21, 2020, by University of the Witwatersrand Human Research Ethics Committee Medical, 31 Princess of Wales Terrace, Parktown, Johannesburg, 2193, South Africa

- **2000 healthy volunteer subjects** aged between 18 and 65 years
- **Starting** of the study: June 24, 2020
- **End** of the study: December 31, 2021
Protocols for clinical studies of 2 Covid-19 vaccines
ChAdOx1 nCoV-19 and mRNA-1273 vaccines

(Written by the N.I.H.)
Following

2 - Protocol of the University of Oxford / Astra Zeneca Phase II / III study with the ChAdOx1 nCoV-19 vaccine

- **Title of the study:** A phase 2/3 study to determine the efficacy, safety and immunogenicity of the candidate Coronavirus Disease (COVID-19) vaccine ChAdOx1 nCoV-19

- **Country of the study:** United-Kingdom

- **Sponsor of the study:** Research Services, University Offices Wellington Square, Oxford, 1200, United Kingdom

- **Summary of the study:** To evaluate the efficacy of the candidate ChAdOx1 nCoV-19 in adults aged 18 and over. To assess the safety of the ChAdOx1 nCoV-19 vaccine candidate in adults and children. To assess the safety, tolerability and reactogenicity profile of the ChAdOx1 nCoV-19 candidate

- **Favorable opinion of the Competent Authority:** April 5, 2020

- **Favorable opinion of the Ethics Committee:** April 8, 2020

- **12,390 healthy volunteer subjects** divided into 4 age groups: **60 under** the age of **18, 60 children** aged between **2 and 11 years old, 12,030 adults** aged between **18 and 64 years old, 240 subjects** aged over **65**

- **Starting of the study:** May, 2020

- **End of the study:** May, 2021
Protocols for clinical studies of 2 Covid-19 vaccines
ChAdOx1 nCoV-19 and mRNA-1273 vaccines
(Written by the N.I.H.)

Following

3- University of Oxford / Astra Zeneca Phase III study protocol with ChAdOx1 nCoV-19 vaccine

- **Title of the study**: A phase III randomized controlled trial to determine safety, efficacy, and immunogenicity of the non-replicating ChAdOx1 nCoV-19 vaccine

- **Country of the study**: Brazil

- **Ethics approval**: Approval pending:
 1. The National Commission for Research Ethics (Comissão Nacional de Ética em Pesquisa, (CONEP) - Brazil
 2. Oxford Tropical Research Ethics Committee (OxTREC) - UK

- 2000 healthy volunteer subjects aged between 18 and 55 years

- **Starting of the study**: May 1, 2020

- **End of the study**: July 31, 2021
4- Protocol for Phase I study of Moderna with their new vaccine mRNA-1273

- **Title of the study**: Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV2 Infection COVID-19. This is a **phase I**, open-label, **dose-ranging clinical trial** in males and non-pregnant females, starting at 18 years of age.

- **Sponsor of the study**: National Institute of Allergy and Infectious Diseases (NIAID)

- **Country of the study**: United States of America (Georgia, Maryland, Washington)

- **Summary of the study**: This is a **phase I**, open-label, **dose-ranging clinical trial** in males and non-pregnant females, starting at 18 years of age, inclusive, who are in good health and meet all eligibility criteria. This clinical trial is designed to assess the safety, reactogenicity and immunogenicity of mRNA-1273 manufactured by ModernaTX, Inc. mRNA-1273 is a novel lipid nanoparticle (LNP)-encapsulated mRNA-based vaccine that encodes for a full-length, prefusion stabilized spike (S) protein of SARS-CoV-2. Enrollment will occur at up to 3 domestic clinical research sites. One hundred and fifty-five subjects will be enrolled into one of thirteen cohorts (10 micrograms [mcg], 25 mcg, 50 mcg, 100 mcg, and 250 mcg). Subjects will receive an intramuscular (IM) injection (0.5 milliliters [mL]) of mRNA-1273 on Days 1 and 29 in the deltoid muscle and will be followed through 12 months post second vaccination (Day 394). Follow-up visits will occur 1, 2, and 4 weeks post each vaccination (Days 8, 15, 29, 36, 43, and 57), as well as 3, 6, and 12 months post second vaccination (Days 119, 209, and 394).

- **Ethics approval**: ???

- **155 healthy volunteer** subjects aged between 18 and 99 years

- **Starting of the study**: March 16, 2020

- **End of the study**: November 22, 2021
5- Protocol for Phase II study of Moderna with their new vaccine mARN-1273

- **Title of the study**: A Phase 2a, Randomized, Observer-Blind, Placebo Controlled, Dose-Confirmation Study to Evaluate the Safety, Reactogenicity, and Immunogenicity of mRNA-1273 SARS-COV-2 Vaccine in Adults Aged 18 Years and Older

- **Sponsor** of the study: Moderna TX, Inc.

- **Collaborators**: Biomedical Advanced Research and Development Authority

- **Country** of the study: United States of America.

- **Locations**: Georgia, Kansas, Missouri, Nebraska, North Carolina, South Dakota, Texas, Utah.

- **Ethics approval**: Studies a U.S. FDA-regulated Drug Product ???

- **600 healthy volunteer subjects aged** between 18 and 55+

- **Starting** of the study: May 20, 2020

- **End of the study**: August, 2021
COVID-19 Vaccine: ChAdOx1 nCoV-19

According to information provided by the NIH and WHO, 160 vaccines against Covid-19 are under development. But, after reviewing Phase 1, 2 and 3 clinical studies, the protocols of which were all written by the NIH, and their advancement, we came to the following conclusion:

The only vaccine that has been developed and already manufactured for several months is the ChAdOx1 nCoV-19

All other 159 vaccines are "decoys"

ChAdOx1 nCoV-19 is the result of a collaboration between the Institut Pasteur (Sanofi) and the Jenner Institute (AstraZeneca).

In ChAdOx1 nCoV-19, the genome of Covid-19 coronavirus is carried by the Chimpanzee adenovirus ChAdOx1, which serves as a viral vector
COVID-19 Vaccine: ChAdOx1 n-CoV-19

In the only vaccine developed and put into production, the genome of the Covid-19 coronavirus is carried by the Chimpanzee adenovirus ChAdOx1, which serves as a viral vector.

ChAdOx1 nCoV-19: Covid-19 coronavirus carried by the vector virus ChAdOx1

Nanoparticles described in Microsoft Patent PCT/US2019/038084, which will control you thanks to 5G

Disinfectants: either Thimerosal or Formaldehyde and antibiotics
ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice

Naif Khalaf Alharbi, Eriko Padron-Regalado, Craig P. Thompson, Alexandra Kupke, Daniel Wells, Megan A. Sloan, Keith Grehan, Nigel Temperton, Teresa Lambe, George Warimwe, Stephan Becker, Adrian V.S. Hill, Sarah C. Gilbert

The Middle East respiratory syndrome coronavirus (MERS-CoV) has infected more than 1900 humans, since 2012. The syndrome ranges from asymptomatic and mild cases to severe pneumonia and death. The virus is believed to be circulating in dromedary camels without notable symptoms since the 1980s. Therefore, dromedary camels are considered the only animal source of infection. Neither antiviral drugs nor vaccines are approved for veterinary or medical use despite active research on this area. Here, we developed four vaccine candidates against MERS-CoV based on ChAdOx1 and MVA viral vectors, two candidates per vector. All vaccines contained the full-length spike gene of MERS-CoV; ChAdOx1 MERS vaccines were produced with or without the leader sequence of the human tissue plasminogen activator gene (tPA) where MVA MERS vaccines were produced with tPA, but either the mH5 or F11 promoter driving expression of the spike gene. All vaccine candidates were evaluated in a mouse model in prime only or prime-boost regimens. ChAdOx1 MERS with tPA induced higher neutralising antibodies than ChAdOx1 MERS without tPA. A single dose of ChAdOx1 MERS with tPA elicited cellular immune responses as well as neutralising antibodies that were boosted to a significantly higher level by MVA MERS. The humoral immunogenicity of a single dose of ChAdOx1 MERS with tPA was equivalent to two doses of MVA MERS (also with tPA). MVA MERS with mH5 or F11 promoter induced similar antibody levels; however, F11 promoter enhanced the cellular immunogenicity of MVA MERS to significantly higher magnitudes. In conclusion, our study showed that MERS-CoV vaccine candidates could be optimized by utilising different viral vectors, various genetic designs of the vectors, or different regimens to increase immunogenicity. ChAdOx1 and MVA vectored vaccines have been safely evaluated in camels and humans and these MERS vaccine candidates should now be tested in camels and in clinical trials.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Extract from the interview with Dr Tangy in PARIS-MATCH from May 14-20, 2020

Among the 400 emails received each day by Professor Etienne Simon-Lorière, responsible for the functional genomic unit for infectious diseases, there is always one sent by an unknown person who found his contact on the Internet: where are they? vaccine research? On this point, Frédéric Tangy, head of the vaccine innovation laboratory, does not want to leave any doubt. With a sigh, he said: "There will be no miracle vaccine in November or December. At best, it will be in 2021." He even plagues against figures which, according to him, sow confusion. Thus, those of the London School of Hygiene & Tropical Medicine which has just listed 120 vaccines in development in the world.... “It can be misleading. There are maybe only eight that will result! And of those, tested in China, Britain, Germany or the United States, few are expected to progress from phase 1 to phase 2 of human clinical trials. Industrialists know this very well: most are just new strategies, having not yet shown any clinical proof. I call them "mouse vaccines". Vaccine science, the real one, the one that works, doesn't move that way. In half an hour, he will transmit a videoconference, recorded the day before, to an audience of scientists from the Academy of Sciences. It deals specifically with the steps required to develop a vaccine. "Look at my diagrams: a vaccine is at least eight years of research!"

The AIDS vaccine has been on it for thirty-five years, and it's still very difficult.

According to Dr Frédéric Tangy, the father of Covid-19, it takes at least 8 years to develop a vaccine (interview in Paris-Match from May 16 to 20, 2020)
In 2015, Bill Gates sounded the alarm at a press conference that will go viral: nearly 30 million people have watched it to date. It describes the catastrophic scenario that the entire planet has experienced since the start of the Covid-19 epidemic.

It's easy to predict a pandemic when you start it.
Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19

Yang Liu,¹,* Wenjian Liao,²,* Lagen Wan,¹ Tianxing Xiang,³ and Wei Zhang²

Abstract

The aim of this study was to analyze the correlation between dynamic changes in the nasopharyngeal viral load of patients infected with the new coronavirus causing pneumonia and lymphocyte count disease severity. Cases newly diagnosed with COVID-19 at the First Affiliated Hospital of Nanchang University from January 2020 to February 2020 were analyzed retrospectively. Quantitative real-time polymerase chain reaction was used to determine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from throat swab sample ΔCT values; lymphocyte and lymphocyte subset counts, coagulation system factor levels, myocardial injury indexes, and laboratory biochemical indicators were compared between the mild group and the severe group. The correlation between the relative load of nasopharyngeal SARS-CoV-2 RNA and severe disease symptoms was analyzed. Of the 76 patients, 49 were male and 27 were female. The lymphocyte, CD⁴⁺ T lymphocyte, and CD⁸⁺ T lymphocyte counts all differed significantly between the two groups (p < 0.001), as did differences in interleukin (IL)-2R, IL-6, and IL-8 levels (p = 0.022, 0.026, and 0.012, respectively). Moreover, there were significant differences in prothrombin time, D-dimer, and fibrinogen levels between the mild group and the severe group (p = 0.029, 0.006, and <0.001, respectively), and in lactate dehydrogenase and troponin (p < 0.001 and p = 0.007, respectively). SARS-CoV-2 RNA load and lymphocyte count, CD⁴⁺ T lymphocyte count, and CD⁸⁺ T lymphocyte count were linearly negatively correlated (p < 0.001). SARS-CoV-2 RNA load was positively correlated with IL-2R, prothrombin time, lactate dehydrogenase, and hypersensitive troponin T (p = 0.002, p = 0.009, and p < 0.001, respectively). In addition, the time that it took for the nucleic acid test to turn negative was significantly shorter for patients in the mild group than for those in the severe group (Z = -6.713, p < 0.001). In conclusion, relative SARS-CoV-2 RNA load in the nasopharynx is closely related to COVID-19 severity. If the relative RNA load was higher, the lymphocyte count was lower, organ damage was greater, and the time it took for the nucleic acid test to turn negative was longer.

Keywords: nasopharyngeal virus RNA load, COVID-19, lymphocyte count, organ damage
TREATMENT OF COVID-19 VIRAL INFECTION WITH HYDROXYCHLOROQUINE

Justification for the use of:

- Hydroxychloroquine

- Hydroxychloroquine and Azithromycin (or an antibiotic from the family of macrolides or tetracyclines):
Pharmacokinetics of Quinine and Doxycycline in Patients with Acute Falciparum Malaria: A Study in Africa

*CEMAF s.a., Poitiers, France; †Service des Maladies Infectieuses and ‡Laboratoire de Biochimie, CHU de Kamengue, Bujumbura, Burundi; and §Laboratoires Pfizer, Afrique et Proche Orient, Vitrolles and †INSEAD, Fontainebleau, France

Summary: The pharmacokinetics of quinine was investigated in patients with acute falciparum malaria treated with quinine alone or in the presence of doxycycline. Twenty-six patients divided into two groups of equal number were enrolled in the study. In the absence of doxycycline, the volume of distribution of quinine (mean ± SD) was estimated to be $1.32 ± 0.32 \text{ L/kg}$, and its clearance was $0.125 ± 0.47 \text{ L/h/kg}$, which was only in partial agreement with previously published data. No effect of doxycycline on the pharmacokinetics of quinine was observed. Key Words: Acute falciparum malaria—Quinine—Doxycycline—Pharmacokinetics.
To read the full article see DOCUMENT 22 (USB Key)

DOI 10.1186/s12936-015-0980-0

Tetracyclines in malaria
Tiphaine Gaillard¹,²,³, Marylin Madamet²,⁴,⁵ and Bruno Pradines¹,²,⁵,⁶

Abstract
Malaria, a parasite vector-borne disease, is one of the greatest health threats in tropical regions, despite the availability of malaria chemoprophylaxis. The emergence and rapid extension of Plasmodium falciparum resistance to various anti-malarial drugs has gradually limited the number of potential malaria therapeutics available to clinicians. In this context, doxycycline, a synthetically derived tetracycline, constitutes an interesting alternative for malaria treatment and prophylaxis. Doxycycline is a slow-acting blood schizontocidal agent that is highly effective at preventing malaria.

In areas with chloroquine and multidrug-resistant P. falciparum parasites, doxycycline has already been successfully used in combination with quinine to treat malaria, and it has been proven to be effective and well-tolerated. Although not recommended for pregnant women and children younger than 8 years of age, severe adverse effects are rarely reported. In addition, resistance to doxycycline is rarely described. Prophylactic and clinical failures of doxycycline have been associated with both inadequate doses and poor patient compliance. The effects of tetracyclines on parasites are not completely understood. A better comprehension of the mechanisms underlying drug resistance would facilitate the identification of molecular markers of resistance to predict and survey the emergence of resistance.

Keywords: Malaria, Plasmodium falciparum, Anti-malarial drug, Resistance, Tetracycline, Doxycycline, Prophylaxis, Treatment

¹-Unité de Parasitologie. Département d’Infectiologie de terrain, Institut de Recherche Biomédicale des Armées, Marseille, France. ²-Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France. ³-Fédération des Laboratoires, Hôpital d’Instruction des Armées Sainte Anne, Toulon, France. ⁴-Equipe Résidente de Recherche en Infectiologie Tropicale, Institut de Recherche Biomédicale des Armées, Marseille, France. ⁵-Centre National de Référence du Paludisme, Marseille, France. ⁶-Unité de Parasitologie et d’Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.
Why Agnès BUZYN and Olivier VERAN have banned the prescription of Hydroxychloroquine to Covid-19 infected people?

Agnès BUZYN and Yves LEVY know that DNA fragments from the germ of Malaria are inserted into the genome of Covid-19 (see DOCUMENT 2)

Under these conditions, administration of hydroxychloroquine destroys the genome of Covid-19 and stops the infection.
WARNING

- Covid-19 helped spark a false pandemic, and spread fear across the world, to make us accept the Covid-19 vaccine.

- By seeking to vaccinate the entire world population, the sponsors of this vaccine, Bill Gates and his allies, want to enslave and control us, pursuing two objectives:
 - Control the entire world population after having vaccinated it, thanks to the deployment of 5G;
 - Limit the world's population.

 This vaccine is very dangerous because it will cause, in vaccinated people, deleterious immunodeficiency, due, in particular, to the HIV sequences of its genome.

MEN WORLDWIDE MUST REFUSE COVID-19 VACCINE THAT BILL GATES AND ITS ALLIES WANT TO IMPOSE ON US